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A 

A c rack  model s imilar  to the P e i e r l s - N a b a r r o  model is used to investigate the dependence 
of the configuration of the atomic planes border ing a c rack  on the law of interplanar in ter -  
action. The maximum s t ress  at the end of the c rack  is determined direct ly  f rom the s t r e ss  
law, and the configuration of the c r ack  is descr ibed by a smooth function satisfying nonlin- 
ear  integro-different ial  singular equation (1.3). A semi - inver se  method of solving this 
equation is proposed.  The configurations of the atomic planes border ing the c rack  are con-  
s tructed for a ser ies  of laws of interplanar interaction. 

A fundamental p rob lem of modern f rac ture  mechanics is the analysis of the mechanisms of c rack  
initiation and growth and the related problems of the interaction of c racks  with dislocations,  vacancies ,  
and other  s t ruc tura l  defects.  It is known that a c rack  is a powerful s t r e ss  ra i se r ;  accordingly, in solving 
the above problems it is neces sa ry  to take into account the proper t ies  of the local elastic fields at the tip 
of the crack.  The determination of these fields reduces to the problem of the shape of the c rack  tip. 

At the microscopic  level the question of c rack  shape is equivalent to the question of the conf igura-  
tion of the atomic planes border ing the c rack  [1]. A microscopic  c rack  is usually defined as a segment on 
which the atomic planes are separated by a distance such that the interaction between them is essential ly 
nonlinear. Moreover ,  a macroscopic  c rack  is charac te r i zed  by the p resence  of a segment on which this 
distance is so great  that there  is p rac t ica l ly  no interaction. 

If the configuration of the atomic planes has been determined experimentally,  then, employing the 
method used in [2], it is possible to solve the inverse problem,  i.e., f rom the given configuration r e c o n -  
s truct  the law of interaction of the atomic planes border ing the crack.  Our intention is to investigate the 
direct  problem,  i.e., the problem of finding the configuration of the atomic planes border ing a c rack  f rom 
a given law of interplanar interaction. 

The solution of this p rob lem is complicated by the following factors :  1) geometr ic  nonlinearity (fin- 
ite s t rains) ,  2) nonlinearity of the s t r e ss  law aij = (~ij(ek/), 3) the d i sc re teness  of real  media. 

In what follows we examine a cer ta in  special c r ack  model [2] differing f rom that usually employed in 
the linear theory of elasticity.  

1. If it is assumed that all the nonlinear effects are localized in a thin boundary layer  surrounding 
the crack,  then the body may be represented  as two l inear -e las t ic  hal f -spaces  separated in the ec~uilibrium 
position by an interatomic distance a and interacting according to a cer ta in  nonlinear s t r e ss  law at = 
crl(u/a), where c~l is the normal  component of the s t r e s s  tensor ,  and u the relat ive normal  displacement of 

the boundaries of the half-space.  

Here the s t r e s s  law is t reated as the law of interaction of the atomic planes; accordingly,  at small  

displacements  Hooke's law must be satisfied, i.e., 

[, (u)j E r --~ ~ - -  (Eis Young's modulus) �9 
~ 0  a 

( i  .i) 
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The  a r e a  bounded by  the s t r e s s - l a w  g r a p h  is n u m e r i c a l l y  equa l  to the  w o r k  done in s e p a r a t i n g  the 
a t o m i c  p l a n e s ,  i . e . ,  to t w i c e  the  s u r f a c e  e n e r g y  d e n s i t y  % t h e r e f o r e  the  s t r e s s  law should  a l so  s a t i s f y  the  
cond i t ion  

oo 

I v~(u./a)du- 27" �9 (1.2) 
o 

If the  n o r m a l  d i s p l a c e m e n t  u~(x), c a u s e d ,  fo r  e x a m p l e ,  by  i n t e r n a l  s t r e s s e s  o r  the i n t r o d u c t i o n  of  a 
wedge  b e t w e e n  the h a l f - s p a c e s ,  is g iven  on p a r t  of the  s u r f a c e  of the  h a l f - s p a c e s ,  we can  e x a m i n e  [he 
p r o b l e m  of f inding  the d i s p l a c e m e n t s  on the r e s t  of the  s u r f a c e ,  i . e . ,  the p r o b l e m  of  the  c o n f i g u r a t i o n  of  
the  c r a c k  t ip .  

The  e q u i l i b r i u m  equa t ion  of the c r a c k  has  the  f o r m  

z~n ~" (nx(x) --~ ~ - x  ] d:~ -~ G = �9 , (1.3) 
- - o o  

H e r e  I-I is the  H i l b e r t  t r a n s f o r m  o p e r a t o r ,  D = I/4E fo r  p l a n e  s t r e s s ,  D = E/4(1  - v 2) fo r  p l a n e  s t r a i n ,  
and v is  P o i s s o n ' s  r a t i o .  By ~(u(x) /a)  we u n d e r s t a n d  the to ta l  n o r m a l  s t r e s s  p lo t t e d  as  a func t ion  of u (x ) / a .  

i n t r o d u c i n g  the  d i m e n s i o n l e s s  s t r e s s  g, we w r i t e  Eq. (1.3) in the  f o r m :  

D i a)) 
(1.4) 

Entov and S a l j a n i k  [3], hav ing  e x a m i n e d  the p r o b l e m  with  a p i e c e w i s e - l i n e a r  s t r e s s  law in a s i m i l a r  
f o r m u l a t i o n ,  a r r i v e d  at an ana logous  c r a c k  mode l .  

2. The m o d e l  in ques t ion  is  s i m i l a r  to that  e m p l o y e d  in P e i e r l s - N a b a r r o  d i s l o c a t i o n  t h e o r y  [4]. We 
wi l l  c o n s i d e r  a body  con ta in ing  an edge d i s l o c a t i o n  with B u r g e r s  v e c t o r  b v = B (Fig .  1). A c c o r d i n g  to 
P e i e r l s ,  such  a body  m a y  be  r e p r e s e n t e d  i n t h e  f o r m  of  two l i n e a r - e l a s t i c  h a l f - s p a c e s ,  the  i n t e r f a c e  c o i n c i d -  
ing with the  p l a n e  x = 0. If one h a l f - p l a n e  s l i p s  r e l a t i v e  to the  o t h e r ,  the  s h e a r  s t r e s s  ~- at the  e d g e s  of  the  
h a l f - s p a c e s  m u s t  be  a p e r i o d i c  funct ion in the  t a n g e n t i a l  d i s p l a c e m e n t  of the  h a l f - s p a c e s  v. 

In the  P e i e r l s - N a b a r r o  m o d e l  the  e q u i l i b r i u m  equa t ion  c o i n c i d e s  (except  for  the  c o o r d i n a t e  n o t a -  
t ion) with Eq. (1.3) if cr on the  r i gh t  is  r e p l a c e d  by 1- and u in the  i n t eg rand  by  v. As the s t r e s s  law P e i e r l s  
s e l e c t e d  the  funct ion  

= -- GDsin (R,) (G, R = const). 

In th i s  c a s e  the  e q u i l i b r i u m  equa t ion  a d m i t s  the  e f f e c t i v e  so lu t i on  

2 
v ---- ~- arc tg (GRx). 

The P e i e r l s  s o l u t i o n  c o r r e s p o n d s  to v e r y  n a r r o w  d i s l o c a t i o n s ;  in o r d e r  to s i m u l a t e  b r o a d e r  d i s l o c a -  
t ions  it is  p o s s i b l e  to e m p l o y  the  g e n e r a l i z a t i o n  of  the  P e i e r l s  so lu t ion  p r o p o s e d  by  F o r m a n ,  Dzhesuon ,  
and Wood [4]. The  m o d i f i e d  P e i e r l s - N a b a r r o  m o d e l  can  be used  to a n a l y z e  the  shape  of the  a t o m i c  p l a n e s  
b o r d e r i n g  the c r a c k .  In th i s  c a s e  the  cut m u s t  be  t aken  a long  the p l a n e  y = 0 (Fig .  1) and the t a n g e n t i a l ,  
r a t h e r  than  the n o r m a l  componen t  of the  s t r e s s  t e n s o r  mus t  be  c o n s i d e r e d .  The a t o m i c  p l a n e s  m - m  and 
n - n  p l a y  the  p a r t  of h a l f - s p a c e  b o u n d a r i e s .  Thus ,  we a r r i v e  at the  c r a c k  m o d e l  c o n s i d e r e d  above .  

As m a y  be  s e e n  f r o m  Fig .  1, the  r e l a t i v e  n o r m a l  d i s p l a c e m e n t  of the  h a l f - s p a c e  b o u n d a r i e s  ( i . e . ,  
the  p l a n e s  m - m  and n-n)  m u s t  s a t i s f y  the c o n d i t i o n  
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Fig. 1 

u (--oo) = 0, u ( ~ ) =  B .  (2.1) 

For the final formulation of the problem,  apart  f rom the law of interaction of 
of the half -spaces ,  we must specify the law of interaction between the half -spaces  
and the wedge. 

However, it is easy to show that the surface energy of the crack,  which can be 
written in the form 

cc u (x)  

--CO 0 

does not depend on the laws of interplanar interaction and interaction between the half-spaces  and the 
wedge and is equal to DB2/2u. 

In o rder  to solve the problem of the configuration of the tip of a macroscopic  c rack  it is sufficient to 
approximate the s t r e s se s  created by the wedge at the surface of the hal f -spaces ,  while satisfying the fol-  
lowing conditions: the resultant force acting on the half-space must be equal to zero and, moreover ,  the 
effects associated with the interaction of the hal f -spaces  with each other and with the wedge must be well 
separated,  i.e., the configuration of the c rack  in the neighborhood of the wedge should not affect the con-  
figuration in the region of nonlinear interaction of the half -spaces .  The second condition is charac te r i s t i c  
of macroscopic  c racks  and is c losely associated with the condition of autonomy of the c rack  tip [5]. F rom 
the second condition it follows that in the region of nonlinear interaction of the half -spaces  the function 
(r(u/a) coincides with the law of interplanar interaction crl(u/aS. 

In par t icu lar ,  it may be assumed that the total s t r e s s  (r(x) (in what follows (r(u(x)/a5 and (r(x), like 
g(u(x)/a) and g(x), are understood to represent  the same function) is an odd function relative to the co -  
ordinate origin, which is so selected that u(0) = l/2B. (In this case the coordinate sys tem in Fig. 1 must be 
shifted to the left.) Given this choice of or(x) the f irst  condition is automatical ly satisfied; the satisfaction 
of the second condition will be verified after the solution has been found. 

We could have tr ied to extend the analogy between the model in question and the Pe i e r l s -Naba r ro  
model and use the solution of Forman,  Dzhesuon, and Wood to analyze the configuration of the atomic 
planes border ing the crack.  However, this solution does not possess  the interval,  charac te r i s t i c  of m a c r o -  
c racks ,  on which there are  prac t ica l ly  no s t r e s ses .  Obtaining a ser ies  of solutions possess ing  such an in- 
terval  is the principal  mathematical  difficulty of the p rob lem in question. 

3. In o rder  to overcome this difficulty we will employ a semi - inve r se  method based on the integral 
representa t ion of the solution of Eq. (1.4) for a right side of a rb i t r a ry  form. As the basis of this solution 
we will take the l inear -e las t ic  solution of the c rack  problem. 

In the approximation of the theory of e las t ic i ty  the c rack  is regarded  as a mathematical  cut, whose 
edges are  free of s t r e sses .  In what follows we shall requi re  the solution of the problem of a c rack  gene r -  
ated by an edge dislocation with Burgers  vector  by = B, which is equivalent to the insertion of a semi- in -  
finite wedge of width B. Let the c rack  be located in the plane z = 0 between the straight lines x = - t  and x = 
t. Then the equil ibrium equation of the c r ack  can be wri t ten in the form 

t 
i 

- - t  

(3.1) 

Since the edges of the crack are free of stresses, on the right side of Eq. (3.15 we must set g(x) = 0 

at Ixl < t. The boundary conditions of Eq. (3.1) are 

u ( - - t ) = 0 ,  u ( t ) = B .  (3.2) 

The solution of homogeneous equation (3.1) with conditions (3.2} has the form [6] 

du B B 
~-~ = R e "  i f  ~ , g (x) = - -  Re ~ ] / - ~  sgn x ( 3 . 3 5  
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where Re denotes the real part of the complex-valued function. 

The length of the crack L = 2t can be determined from energy 

considerations [7]: 

DB ~ 
L = 4 ~  (3.4) 

Equat ions  (3.3) show that in the approx ima t ion  of the t h e o r y  of 
e l a s t i c i ty  the tip of the c r a c k  acqu i re s  a pa r abo l i c  shape,  and the 
s t r e s s e s  in the ne ighborhood  of the tip b e c o m e  infinite,  which indi -  
ca t e s  the phys ica l  i n c o r r e c t n e s s  of the l i n e a r - e l a s t i c  approx imat ion .  
At tempts  to r e m o v e  the s ingu ia r i ty  in the solut ion of the l inear  t h e o r y  

of e l a s t i c i t y  have compe l l ed  a n u m b e r  of au thors  to take the f o r c e s  of in te rac t ion  be tween  the c r a c k  edges  
into account  [5, 8-10].  

In the model  c o n s i d e r e d  the s ingu la r i ty  p r o b l e m  is au toma t i ca l ly  e l imina ted :  the a tomic  p lanes  a re  
a lways  smoo th ly  joined,  the smoo thnes s  of the law of i n t e rp l ana r  in te rac t ion  ensu r ing  the c o r r e s p o n d i n g  
s m o o t h n e s s  of the de r iva t ive  of  the d i sp lacement .  It should be noted that in the e l e c t r o n  m i c r o g r a p h  of a 
d i s loca t ion  c r a c k  in a sheet  of c o p p e r  ph tha locyanin ,  p r e s e n t e d  in [2], the shape of the a tomic  p lanes  d i f -  
f e r s  s t r ik ing ly  f r o m  the shape expec ted  on the bas i s  of  an anaIys i s  of solut ion (3.3): the tip of  the c r a c k  is 
concave  r a t h e r  than convex,  and, m o r e o v e r ,  the a tomic  p lanes  have pos i t ive  c u r v a t u r e  o v e r  a lmos t  the 
en t i r e  length of the c r a c k ,  the sign of the c u r v a t u r e  changing  only n e a r  the wedge. 

4. We now tu rn  to the solut ion of Eq. (1.4). if we mul t ip ly  the r ight  s ide of the f i r s t  of Eqs.  (3.3) by 
some funct ion f(t) and in tegra te  with r e s p e c t  to t f r o m  lxl to tl,  the function obtained will a lso give the s o -  
lution of the c r a c k - e q u i l i b r i u m  p rob lem;  however ,  the s t r e s s  g(x) at the su r f ace  of the c r a c k  will,  g e n e r a l -  
ly speaking,  be nonzero .  If f ( t )  = 0 on the in terva l  [0,l], (l < t~), then g(x) will a lso  be equal to z e r o  on that 
in terval ;  if f (t) is sma l l  on [0,/],  then g(x) will  a lso be smal l .  In the c a s e  in ques t ion  t 1 = ~ should be taken 
as the u p p e r  l imit  of  in tegrat ion.  

F o r m a l l y ,  we can p r o c e e d  as follows. We in t roduce  the c o m p l e x - v a l u e d  funct ion of r e a l  a rgumen t  

r (x) = ~ (x) + i~p (x) (4.1) 

f (t) dt  
q)(x)= t r ~ ,  ~(x)------  ~ s g n x  . (4.2) 

I [  

The f u n c t i o n f ( t )  is a s s u m e d  to be such that  in tegra l s  (4.2) exist  eve rywhe re .  Using (3.1) and (3.3), 
we can eas i ly  show that 

~Ir  I (x) = - ir ( x ) .  (4.3) 

It can  be shown that for  any cont inuous funct ion n(x) d e c r e a s i n g  at infinity not m o r e  s lowly than 
N x - a ( a  > 0), N is an a r b i t r a r y  c o n s t a n t ) t h e r e  is a p a i r  of funct ions f+( t )  and f - ( t )  such that  

• (x) = ~§ (x) -[-~p- (x) (9 • (x) -[- iS +. (x) = r177 (x)), (4.4) 

In fact ,  we t r ea t  e x p r e s s i o n s  (4.2) as equat ions  in the f u n c t i o n f ( t ) .  By v i r tue  of the evenness  and 
oddness  of (a(x) and r r e s p e c t i v e l y ,  it is suff ic ient  to obtain the solut ion at x ~- 0. By means  of  s imple  
subs t i tu t ions  these  equat ions  a r e  r educed  to Abel in tegra l  equat ions  [6], a f ter  which the solut ion is wr i t ten  
in expl ic i t  fo rm,  

We set  

t 
2t~  dv/~. ~x, 1 ( t ) - -2 t  ~ dr 

f ( t ) = - -  ~ J V 'x~ - t~ _ _  ~ _  ,) _V t_i~_~2"dx , 
t o 

(4.8) 

(4.6) 
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t i ve  exponent .  

now the unknown func t ions  f+( t )  and f - ( t )  a r e  found f r o m  the f i r s t  and 
s econd  of  Eqs .  (4.5), r e s p e c t i v e l y .  [The p r o o f  is e a s i l y  ex tended  to 
the  c a s e  of  d i s c o n t i n u o u s  ~(x)] .  

We se t  

du / dx = q~+ (x) + ~p- (x). (4.7) 

We can  r e p r e s e n t  in th i s  f o r m  an a r b i t r a r y  funct ion  d e c r e a s i n g  
at in f in i ty  not m o r e  s l o w l y  than a p o w e r  funct ion wi th  a r b i t r a r y  n e g a -  

F r o m  (1.4) by  v i r t u e  of (4.1) and (4.3) t h e r e  fo l lows  

g (x) = ~+ (x) - -  q)- (x) . (4.8) 

Thus ,  an a r b i t r a r y  (in the  a b o v e - m e n t i o n e d  c l a s s )  s o l u t i o n  of Eq. (1.4) can  be  r e p r e s e n t e d  in the  
f o r m  (4.7), (4.8). In what  fo l lows t h e s e  equa t ions  a r e  r e g a r d e d  as  the  p a r a m e t r i c  f o r m  of  the s t r e s s  law. 

The  a b o v e - m e n t i o n e d  P e i e r l s  so lu t i on  is ob ta ined  f r o m  (4.7) and (4.8) wi th  

2GZRt 
]+ (t) -~ (G 2R~tz + i)./~ , ] -  (t) - ~  0 , 

lit is  a l s o  e a s y  to ob t a in  the  r e p r e s e n t a t i o n  fo r  the  F o r m a n ,  Dzhesuon ,  and Wood so lu t ion .  

We now r e t u r n  to the p r o b l e m  in ques t ion .  In o r d e r  to ob ta in  a s o l u t i o n  con ta in ing  only  odd g(x),  we 
se t  f - ( t )  = 0. We t r a n s f o r m  the  b o u n d a r y  c o n d i t i o n s ,  a s s u m i n g  that  f + ( t ) i s  i n t e g r a b l e  on the p o s i t i v e  s e m i -  
ax i s .  Condi t ion  (2.1) is  w r i t t e n  in the  f o r m  

oo  

I /+(t)dt  =_ __aB . (4.9) 
o 

The ana logous  i n t e g r a l  o f f - ( t )  would v a n i s h  owing to the  r e q u i r e m e n t  tha t  the  r e s u l t a n t  f o r c e  ac t ing  
on the body  be  z e r o .  

It can  be  shown tha t  in o r d e r  to s a t i s f y  cond i t ion  (1.1) it is su f f i c i en t  tha t  at l a r g e  t 

/+(t )= n----E-- t -T  -[-0 , (4.10) 

Condi t ion  (1.2) is  w r i t t e n  in the  f o r m  

1 o o  

IK(k , ) I /+( t ) /+(kt )d tdk  2y = -D- (4 .11)  
0 o 

w h e r e  K(k) is  a c o m p l e t e  e l l i p t i c  i n t e g r a l  of  the  f i r s t  k ind,  k '  = ~/1 - k 2 is  the  c o m p l e m e n t a r y  modu lus .  
W r i t i n g  cond i t ion  (1.2) in the  f o r m  (4.11) is  l e g i t i m a t e  on ly  for  m a c r o s c o p i c  c r a c k s .  

5. By a s s i g n i n g  v a r i o u s  func t ions  f + ( t ) ,  we can  ob ta in  a s e r i e s  of so lu t i ons  of  Eq. (1.4) c o r r e s p o n d -  
ing to d i f f e r e n t  s t r e s s  l aws .  F o r  the  p u r p o s e  of a s p e c i f i c  c a l c u l a t i o n  the  fo l lowing  v a l u e s  of the  p a r a m -  
e t e r s  w e r e  s e l e c t e d :  

D - ~ E / 4 ( f - - v ~ ) ,  7 = l / s ~ t a ,  B / a = 2 0 ,  v = 0,3 

w h e r e  p is  the  s h e a r  modu lus .  

* W i t h t h i s  c h o i c e  of f +(t) a d i f f i cu l t y  a r i s e s  in c onne c t i on  wi th  the  fact  tha t  at z e r o f + ( t )  should  v a n i s h  t o -  
g e t h e r  wi th  i ts  d e r i v a t i v e .  If the  p a r a m e t e r  b is  s e l e c t e d  so tha t  e x p ( - m 2 b  2) << 1, then  f r o m  the func t ion  
f + ( t ) ,  a l m o s t  wi thout  d i s t o r t i n g  i ts  f o r m ,  we can  s u b t r a c t  a c o r r e c t i o n  of the  type  A l / ( t  3 + 1) + A2t/( t  4 + 1), 
w h e r e  A 1 and A 2 a r e  s e l e c t e d  so as  to s a t i s f y  the  cond i t i on  f+(0 )  = 0, [ f+ ( t ) ] t=  0 -- 0. 
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The functionf+(t)  was taken in the form* 

/* (t) = ~ (b --  t) .40 exp [ -- m 2 (b --  t) 2] + ~ (t -- b) A0c~ 
(t -- b)~ q- c~ 

where ~ (t) is the Heaviside unit function. 

In this case conditions (4.9) and (4.10) are  satisfied analytically, condition 
(4.11) was satisfied and integrals (4.2) evaluated numerical ly  on a computer .  

After conditions (4.9), (4.10), (4.11) have been satisfied, only the pa rame te r  
b remains  free. A ser ies  of configurations of the atomic planes border ing the 
c rack  corresponding to the s t r e ss  laws plotted in Fig. 2 is presented in Fig. 3. 
The dashed line represents  the configuration corresponding to f+(t) = S'~(t - s), 
(5(t) is the Dirae delta function). The values of S and s were determined f rom 
conditions (1.2) and (2.1). Naturally, for this choice off+( t )  condition (1.1) cannot 

We introduce the effective c rack  length L*, that is, twice the distance f rom the coord inate origin to 
the point of inflection on the graph of the relat ive normal  displacement u(x). It follows f rom Fig. 3 that L* 
is almost independent of the form of the s t r e ss  law and coincides with the equil ibrium c rack  length L de-  
termined in the continuous l inear-e las t ic  approximation. This resul t  is perfec t ly  natural:  the problem of 
determining the c rack  length is essent ial ly  a one -pa rame te r  problem (the single p a r a m e t e r  is the surface 
energy density 3/); therefore ,  when co r rec t ly  defined, the equil ibrium c rack  length should not depend on 
the model employed. It is also c lear  f rom Fig. 3 that the c rack  configurations corresponding to different 
s t r e ss  laws do not differ significantly on a large par t  of the effective length, the principal  difference 
being observed in the neighborhood of the point x = -1/2L*. This indicates that the specific form of the 
s t r e ss  law is ref lected only in the configuration of the tip of the macroc rack ,  which confirms the sa t i s fac -  
tion of the condition of nondependence of the configuration of the tip of the m a c r o c r a c k  on the nature of the 
interaction in the neighborhood of the wedge. 

As the inflection charac te r i s t i c  it is possible to select  the maximum value of the derivative of the 
displacement u .  ' In Fig. 4 we have plotted the dependence of u.  ' on the maximum value of the 
s t ress  g* for the given ser ies  of s t r e ss  laws. As the p ieeewise- l inear  s t r e ss  law is approached, u .  ' 
may be expected to increase  without bound, since in this case a logari thmic singulari ty should appear in 
u'(x). 

In conclusion it should be noted that the representa t ion of the solution of Eq. (1.3) can be used to 
analyze the shape of microscopic  c racks  and also to study the motion of broad dislocations. 

The authors thank Yu. N. Rabotnov for his interest  in their  work and A. A. Shtol 'berg for ass is t ing 
with the numerical  calculations. 
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